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Background
 Petri nets:

 A formalism developed in the '60s by C. A. 
Petri to model concurrent systems

 Popular formalism in many fields (computer 
science, control systems, production systems, 
...)

 Simple, intuitive, but at the same time 
powerful
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Basic Concepts
 Two types of elements:

 Places (depicted as white circles):
 Can contain arbitrary number of tokens

 Transitions (depicted as rectangles):
 Are enabled if all its input places have at least one 

token
 Once enabled, can fire consuming one token at each 

input, producing one at each output

 Marking: the condition of the overall 
network, similar to a state in FSM
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Simple Example

 In that case, the net is nondeterministic:
 A token in that place may trigger either of the 

transitions
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 In general, a transition 
can have any number 
of inputs and outputs 

 Similarly, a place can 
go to more than one 
transition
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Mutual Exclusion (mutex) Example
 Example: when 

2 programs can’t 
be in one critical 
section at the 
same time
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 It can be shown that a Petri net with a 
finite number of markings can be 
represented with an FSM and vice versa
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Formal Definition
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Petri Net Properties
1. Marking-independent or structural 

properties
2. Marking-dependent or behavioral:

1. Reachability
2. Boundedness
3. Liveness
4. Reversibility
5. Coverability, persistence, ….
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Reachability
 Consider a firing sequence of M0, M1, …, 

Mn
 Mn is said to be reachable from M0
 Reachability problem: determine if an 

arbitrary marking Mi can be reached from 
an arbitrary initial marking of M0
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Boundedness
 A Petri net is said to be bounded if the 

number of tokens in each place doesn’t 
exceed a finite number for any reachable 
marking

 If the finite number can be specifically 
found (say k), then it is called k-bounded

 Importance: a buffer or register with finite 
size can be used to implement a bounded 
Petri net
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Liveness
 Liveness comes from lack of deadlocks
 A Petri net is said to be live if no matter 

what marking has been reached from an 
arbitrary marking, the firing can be 
continued

 Example in the next slide
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Nonlive Example
 Transitions t1 and t2 may fire 

nondeterministically
 If t1 fires first, there will be a deadlock
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 Intuitive observation:
 A system branches out into 

two processes 
nondeterministically

 But the two processes 
depend on each other

 Recipe for deadlock!
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Reversibility
 A Petri net is reversible if for a marking M 

reached from M0, one can reach M0 from 
M

 May or may not be necessary
 But it is helpful if we have it
 If not, define a “home state”:

 A marking M’ if from any arbitrary marking one 
can reach M’
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Analysis Methods
 The coverability tree:

 A tree that represents ALL possible markings
 Leaves: markings generated from initial
 Branches: a transition firing
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Tree Formation Algorithm
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Coverability Tree Results
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Coverability Tree Observations
 For unbounded Petri nets:

 The tree will be infinitely large
 For a bounded Petri net:

coverability tree = reachability tree
 Usually have to consider another graph:

 Coverability graph
 Not practical!
 Mathematical solution (incidence matrix)
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Time and Petri Nets
 Previous examples do not involve time
 In many cyber-physical systems a 

quantitative notion of time is essential
 The idea of adding time to Petri nets is to 

introduce temporal constraints on its 
elements:
 A transition must fire within 10 time units
 A token must remain in a certain place for at 

least 2 time units
 …
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Time and Petri Nets (Cont’d)
 Note that we talk about "time units", the 

actual unit is not our concern here
 Time has been added to Petri nets in 

many different ways:
 Adding temporal constraints only to places, 

only to transitions, only to arcs, or to any 
combination of them

 Almost all possible approaches have been 
studied in literature

 All of them are called Timed Petri net. So 
beware of the differences!
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Timed Petri Net
 Our focus: introducing the notion of 

temporal constraints on transitions:
 Add a lower bound d and an upper bound D to 

transitions:
 If transition t is associated with constraint [d, D] 

(with d ≤ D), then after t is enabled:
 it must fire no less than d and no more than D time 

units after it is enabled (unless it is disabled before)
 D and d do not have to be integers, they can be any 

non-negative real numbers
 Example in the next slide
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Timed Petri Net Example
 Assume: a token arrives in place P1 at time 

3, one in P2 at time 5, and one in P3 at time 
1

 Transition t fires nondeterministically between 
times 9 and 12

 If d=D, transition has to happen exactly at d

21

 If a transition has no 
explicit temporal 
constraint, then [0, +∞] 
is assumed by default
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Time Semantics
 There are two ways to look at the time 

constraints:
1. A transition must fire if it is still enabled when 

the upper bound on its constraint is reached 
(called Strong Time Semantics or STS)
 With STS, a transition is forced to fire by its temporal 

upper bound (unless it is disabled first)
 The most widely adopted semantics

2. A transition is not forced to fire if it is still 
enabled when its upper bound is reached 
(called Weak Time Semantics or WTS)
 If it fires, then the firing occurs within its bound
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STS Example
 Assuming STS semantics:

 If p and q get their tokens at time 0
 u gets enabled and has to fire by time 3
 v cannot fire before time 4
 So v never gets a chance to fire
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STS vs. WTS Question
 Which semantics is more useful?

 WTS: closer to the original untimed Petri nets
 Reminder: in untimed Petri nets a transition is not 

forced to fire if it is enabled, it could stay enabled 
and never fire

 It has been shown that Petri nets with STS are 
"more powerful" than with WTS

 Choosing the right semantics can greatly affect 
the system characteristics and performance

 When building the model of a system through 
a TPN, one must specify the semantics with 
which the model should be interpreted
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Zero-Time Transitions
 Transitions in which the lower bound is 0 are 

called zero-time transitions
 Since they can occur at the same time they are 

enabled, zero-time transitions may give rise to 
Zeno behavior

 The following sequence of firings in this example 
is admissible: <s, T>, <v, T>, <r, T>, <s, T>, 
<v, T>, <r, T>, <s, T>, ...

25

 T is when place p 
contains a token

 Seems that time is 
not advancing!
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Avoiding Zeno Behavior
 Zeno behavior is physically impossible
 So it should be avoided
 Various solutions have been proposed to 

avoid this phenomenon
 For instance, prohibiting zero-time transitions
 But zero-time transitions have interesting 

practical applications
 The most common solution: disallow 

cycles with only zero-time transitions
 There has to be at least one non-zero-time 

transition in any cycle 26
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Lower Bound Semantics
 Some have interpreted the lower bound as 

the minimum delay between consecutive 
firings of a transition (i.e., recharge time)

 Consider this example:
 If transition r fires at times 1 and 2, when 

does s fire?

27

 Traditional interpretation: at times 4 and 5
 Considering recharge time: at times 4 and 7
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Which One to Use?
 Both semantics have been used

 1st one: to allow simultaneous firing of a transition
 2nd one: to allow recharge time and empty presets

 Recharge time can still be implemented 
using the first semantics (this example)

 Notice the double arc between q and s
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Simultaneous Firing of a Transition
 The first interpretation can lead to 

simultaneous firing of one transition
 In this example if r and s fire at the same 

time T, then v fires twice at time T+3, so 
the following firing sequence is valid:
 <r, T>, <s, T>, <v, T+3>, <v, T+3>

 Again, this may be good or bad depending 
on what is to be achieved
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Empty Presets
 Untimed Petri nets allow transitions to 

have empty presets:
 No input places means a transition is always 

enabled
 But with timed Petri nets, how can this 

model be interpreted?
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Empty Presets (Continued)
 Common interpretation:

 A transition with an empty preset is the same 
as a transition that has a place that is both an 
input and an output of the transition and

 the initial marking contains a token
 as shown below
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Infinite Upper Bound
 An infinite upper bound means that the 

transition may never fire
 Consistent with the traditional idea of Petri 

nets: an enabled transition may never fire
 Another intuitive interpretation: if a 

transition has infinite upper bound, then it 
must eventually fire, unless it is disabled

 The first one is consistent with WTS
 The second one is consistent with STS
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A Real-Time Example
 Kernel (simplified) railroad crossing example assumptions:

 There is only one train
 dm and dM are, respectively, the minimum and maximum time 

to go from the beginning of section R to the beginning of 
section I

 hm and hM are, respectively, the minimum and maximum time 
to go through I

 The gate can be open or closed but also moving up and down
 The moving of the gate takes gamma time units and cannot be 

interrupted

33
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Petri Net Model of KRC

34
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Next Example: Elevator System
 An elevator system is to be installed in a building with m floors.
 The elevator cabin has a set of buttons, one for each floor. The 

buttons light up when pressed and cause the elevator to visit the 
corresponding floor. The lights switch off when the elevator visits 
that floor.

 Each floor has one button to request the elevator. This button 
lights up when pressed. The light switches off when the elevator 
visits the floor.

 When an elevator has no requests to service, it should remain at 
its last destination and await further requests.

 All requests for elevators from floors must be serviced eventually 
with all floors given equal priority.

 All requests for floors within cabin must be serviced eventually 
with floors being serviced sequentially in the direction of the 
cabin’s travel.

35
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System Decomposition
 The system is composed of a certain number of 

parts that evolve concurrently:
 The elevator cabin
 The buttons (both internal and external)

 Each component has a dynamics of its own, 
which can be described through a timed Petri net
 The components interact through shared events (e.g., a 

cabin arriving to a floor switches the corresponding 
button off)

 The shared events are modeled in TPNs as transitions 
whose firings are controlled by places belonging to 
subnets modeling the dynamics of different components

 Parts of the complete diagram are in the next slides
36
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Button Model
 All buttons have the same dynamics

 Transition Reset is shared with other parts of the system
 So other incoming arcs will be added later
 The light is switched off only if the cabin arrives to the 

desired floor
 Transition C is a token consumer, it prevents the 

accumulation of tokens in place P if a request is still 
pending
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Cabin Model
 The cabin interacts with all of the buttons.
 Every button is modeled through an instance of the TPN 

described before.
 Only parts of the TPNs representing the various buttons are 

shown.
 The dynamics of the elevator cabin going up is symmetric 

to the one of the cabin going down => only the part 
concerning the upward movement is shown.

 Only a generic cabin movement from floor j to floor j+1 is 
shown. The complete upward dynamics is made of m-1 of 
these diagrams cascaded together.

 The last floor (floor m) should be modified accordingly as 
the cabin cannot go further up.
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Cabin Model (Continued)
 In the subdiagram representing the movement 

upwards from the jth to the (j+1)th floor, h 
represents any floor above (j+1)th floor

 ILBj+1 is the TPN representing the button inside 
the cabin for floor j+1

 ILBh is the TPN representing the buttons inside 
the cabin for floors above (j+1)th 

 OLBj+1 is the TPN representing the button on 
(j+1)th  floor

 OLBh is the TPN representing the buttons on 
floors above (j+1)th 
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Cabin Petri Net

40
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Cabin Petri Net Description
 Place Fj represents the cabin being stopped at floor j.
 Place Fj2j+1 represents the cabin moving from floor j to floor j+1.
 Place F'j+1 represents the cabin having just arrived at floor j+1.
 The transition between F'j+1 and F''j+1 represents the cabin 

remaining at the floor at least dp time units (where dp is the time 
for a person to get off the cabin).

 When the cabin arrives at the floor j+1, there are two possible 
options: either it stops at the floor (place Fj+1) or it keeps moving 
to floor j+2 without stopping (place UpFj+1); if there are requests 
pending both for floor j+1 and for floors above j+1, the choice is 
entirely nondeterministic (that is, the cabin might not stop even if 
a request for floor j+1 is active).

 The cabin moves upward from floor j only if there is at least one 
pending request from/for a floor above j.

 ∆t is the fixed time to move from one floor to the next.
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