
Embedded Systems Design and Modeling 1

Embedded Systems
Design and Modeling

Petri Nets
And

Their Timed Version

Embedded Systems Design and Modeling
2

Outline
 Background
 Basic concepts
 Formal definition
 General properties
 Timed Petri nets

Embedded Systems Design and Modeling

Background
 Petri nets:

 A formalism developed in the '60s by C. A.
Petri to model concurrent systems

 Popular formalism in many fields (computer
science, control systems, production systems,
...)

 Simple, intuitive, but at the same time
powerful

3

Embedded Systems Design and Modeling

Basic Concepts
 Two types of elements:

 Places (depicted as white circles):
 Can contain arbitrary number of tokens

 Transitions (depicted as rectangles):
 Are enabled if all its input places have at least one

token
 Once enabled, can fire consuming one token at each

input, producing one at each output

 Marking: the condition of the overall
network, similar to a state in FSM

4

Embedded Systems Design and Modeling

Simple Example

 In that case, the net is nondeterministic:
 A token in that place may trigger either of the

transitions

5

 In general, a transition
can have any number
of inputs and outputs

 Similarly, a place can
go to more than one
transition

Embedded Systems Design and Modeling

Mutual Exclusion (mutex) Example
 Example: when

2 programs can’t
be in one critical
section at the
same time

6

 It can be shown that a Petri net with a
finite number of markings can be
represented with an FSM and vice versa

Embedded Systems Design and Modeling

Formal Definition

7

Embedded Systems Design and Modeling

Petri Net Properties
1. Marking-independent or structural

properties
2. Marking-dependent or behavioral:

1. Reachability
2. Boundedness
3. Liveness
4. Reversibility
5. Coverability, persistence, ….

8

Embedded Systems Design and Modeling

Reachability
 Consider a firing sequence of M0, M1, …,

Mn
 Mn is said to be reachable from M0
 Reachability problem: determine if an

arbitrary marking Mi can be reached from
an arbitrary initial marking of M0

9

Embedded Systems Design and Modeling

Boundedness
 A Petri net is said to be bounded if the

number of tokens in each place doesn’t
exceed a finite number for any reachable
marking

 If the finite number can be specifically
found (say k), then it is called k-bounded

 Importance: a buffer or register with finite
size can be used to implement a bounded
Petri net

10

Embedded Systems Design and Modeling

Liveness
 Liveness comes from lack of deadlocks
 A Petri net is said to be live if no matter

what marking has been reached from an
arbitrary marking, the firing can be
continued

 Example in the next slide

11

Embedded Systems Design and Modeling

Nonlive Example
 Transitions t1 and t2 may fire

nondeterministically
 If t1 fires first, there will be a deadlock

12

 Intuitive observation:
 A system branches out into

two processes
nondeterministically

 But the two processes
depend on each other

 Recipe for deadlock!

Embedded Systems Design and Modeling

Reversibility
 A Petri net is reversible if for a marking M

reached from M0, one can reach M0 from
M

 May or may not be necessary
 But it is helpful if we have it
 If not, define a “home state”:

 A marking M’ if from any arbitrary marking one
can reach M’

13

Embedded Systems Design and Modeling

Analysis Methods
 The coverability tree:

 A tree that represents ALL possible markings
 Leaves: markings generated from initial
 Branches: a transition firing

14

Embedded Systems Design and Modeling

Tree Formation Algorithm

15

Embedded Systems Design and Modeling

Coverability Tree Results

16

Embedded Systems Design and Modeling

Coverability Tree Observations
 For unbounded Petri nets:

 The tree will be infinitely large
 For a bounded Petri net:

coverability tree = reachability tree
 Usually have to consider another graph:

 Coverability graph
 Not practical!
 Mathematical solution (incidence matrix)

17

Embedded Systems Design and Modeling

Time and Petri Nets
 Previous examples do not involve time
 In many cyber-physical systems a

quantitative notion of time is essential
 The idea of adding time to Petri nets is to

introduce temporal constraints on its
elements:
 A transition must fire within 10 time units
 A token must remain in a certain place for at

least 2 time units
 …

18

Embedded Systems Design and Modeling

Time and Petri Nets (Cont’d)
 Note that we talk about "time units", the

actual unit is not our concern here
 Time has been added to Petri nets in

many different ways:
 Adding temporal constraints only to places,

only to transitions, only to arcs, or to any
combination of them

 Almost all possible approaches have been
studied in literature

 All of them are called Timed Petri net. So
beware of the differences!

19

Embedded Systems Design and Modeling

Timed Petri Net
 Our focus: introducing the notion of

temporal constraints on transitions:
 Add a lower bound d and an upper bound D to

transitions:
 If transition t is associated with constraint [d, D]

(with d ≤ D), then after t is enabled:
 it must fire no less than d and no more than D time

units after it is enabled (unless it is disabled before)
 D and d do not have to be integers, they can be any

non-negative real numbers
 Example in the next slide

20

Embedded Systems Design and Modeling

Timed Petri Net Example
 Assume: a token arrives in place P1 at time

3, one in P2 at time 5, and one in P3 at time
1

 Transition t fires nondeterministically between
times 9 and 12

 If d=D, transition has to happen exactly at d

21

 If a transition has no
explicit temporal
constraint, then [0, +∞]
is assumed by default

Embedded Systems Design and Modeling

Time Semantics
 There are two ways to look at the time

constraints:
1. A transition must fire if it is still enabled when

the upper bound on its constraint is reached
(called Strong Time Semantics or STS)
 With STS, a transition is forced to fire by its temporal

upper bound (unless it is disabled first)
 The most widely adopted semantics

2. A transition is not forced to fire if it is still
enabled when its upper bound is reached
(called Weak Time Semantics or WTS)
 If it fires, then the firing occurs within its bound

22

Embedded Systems Design and Modeling

STS Example
 Assuming STS semantics:

 If p and q get their tokens at time 0
 u gets enabled and has to fire by time 3
 v cannot fire before time 4
 So v never gets a chance to fire

23

Embedded Systems Design and Modeling

STS vs. WTS Question
 Which semantics is more useful?

 WTS: closer to the original untimed Petri nets
 Reminder: in untimed Petri nets a transition is not

forced to fire if it is enabled, it could stay enabled
and never fire

 It has been shown that Petri nets with STS are
"more powerful" than with WTS

 Choosing the right semantics can greatly affect
the system characteristics and performance

 When building the model of a system through
a TPN, one must specify the semantics with
which the model should be interpreted

24

Embedded Systems Design and Modeling

Zero-Time Transitions
 Transitions in which the lower bound is 0 are

called zero-time transitions
 Since they can occur at the same time they are

enabled, zero-time transitions may give rise to
Zeno behavior

 The following sequence of firings in this example
is admissible: <s, T>, <v, T>, <r, T>, <s, T>,
<v, T>, <r, T>, <s, T>, ...

25

 T is when place p
contains a token

 Seems that time is
not advancing!

Embedded Systems Design and Modeling

Avoiding Zeno Behavior
 Zeno behavior is physically impossible
 So it should be avoided
 Various solutions have been proposed to

avoid this phenomenon
 For instance, prohibiting zero-time transitions
 But zero-time transitions have interesting

practical applications
 The most common solution: disallow

cycles with only zero-time transitions
 There has to be at least one non-zero-time

transition in any cycle 26

Embedded Systems Design and Modeling

Lower Bound Semantics
 Some have interpreted the lower bound as

the minimum delay between consecutive
firings of a transition (i.e., recharge time)

 Consider this example:
 If transition r fires at times 1 and 2, when

does s fire?

27

 Traditional interpretation: at times 4 and 5
 Considering recharge time: at times 4 and 7

Embedded Systems Design and Modeling

Which One to Use?
 Both semantics have been used

 1st one: to allow simultaneous firing of a transition
 2nd one: to allow recharge time and empty presets

 Recharge time can still be implemented
using the first semantics (this example)

 Notice the double arc between q and s

28

Embedded Systems Design and Modeling

Simultaneous Firing of a Transition
 The first interpretation can lead to

simultaneous firing of one transition
 In this example if r and s fire at the same

time T, then v fires twice at time T+3, so
the following firing sequence is valid:
 <r, T>, <s, T>, <v, T+3>, <v, T+3>

 Again, this may be good or bad depending
on what is to be achieved

29

Embedded Systems Design and Modeling

Empty Presets
 Untimed Petri nets allow transitions to

have empty presets:
 No input places means a transition is always

enabled
 But with timed Petri nets, how can this

model be interpreted?

30

Embedded Systems Design and Modeling

Empty Presets (Continued)
 Common interpretation:

 A transition with an empty preset is the same
as a transition that has a place that is both an
input and an output of the transition and

 the initial marking contains a token
 as shown below

31

Embedded Systems Design and Modeling

Infinite Upper Bound
 An infinite upper bound means that the

transition may never fire
 Consistent with the traditional idea of Petri

nets: an enabled transition may never fire
 Another intuitive interpretation: if a

transition has infinite upper bound, then it
must eventually fire, unless it is disabled

 The first one is consistent with WTS
 The second one is consistent with STS

32

Embedded Systems Design and Modeling

A Real-Time Example
 Kernel (simplified) railroad crossing example assumptions:

 There is only one train
 dm and dM are, respectively, the minimum and maximum time

to go from the beginning of section R to the beginning of
section I

 hm and hM are, respectively, the minimum and maximum time
to go through I

 The gate can be open or closed but also moving up and down
 The moving of the gate takes gamma time units and cannot be

interrupted

33

Embedded Systems Design and Modeling

Petri Net Model of KRC

34

Embedded Systems Design and Modeling

Next Example: Elevator System
 An elevator system is to be installed in a building with m floors.
 The elevator cabin has a set of buttons, one for each floor. The

buttons light up when pressed and cause the elevator to visit the
corresponding floor. The lights switch off when the elevator visits
that floor.

 Each floor has one button to request the elevator. This button
lights up when pressed. The light switches off when the elevator
visits the floor.

 When an elevator has no requests to service, it should remain at
its last destination and await further requests.

 All requests for elevators from floors must be serviced eventually
with all floors given equal priority.

 All requests for floors within cabin must be serviced eventually
with floors being serviced sequentially in the direction of the
cabin’s travel.

35

Embedded Systems Design and Modeling

System Decomposition
 The system is composed of a certain number of

parts that evolve concurrently:
 The elevator cabin
 The buttons (both internal and external)

 Each component has a dynamics of its own,
which can be described through a timed Petri net
 The components interact through shared events (e.g., a

cabin arriving to a floor switches the corresponding
button off)

 The shared events are modeled in TPNs as transitions
whose firings are controlled by places belonging to
subnets modeling the dynamics of different components

 Parts of the complete diagram are in the next slides
36

Embedded Systems Design and Modeling

Button Model
 All buttons have the same dynamics

 Transition Reset is shared with other parts of the system
 So other incoming arcs will be added later
 The light is switched off only if the cabin arrives to the

desired floor
 Transition C is a token consumer, it prevents the

accumulation of tokens in place P if a request is still
pending

37

Embedded Systems Design and Modeling

Cabin Model
 The cabin interacts with all of the buttons.
 Every button is modeled through an instance of the TPN

described before.
 Only parts of the TPNs representing the various buttons are

shown.
 The dynamics of the elevator cabin going up is symmetric

to the one of the cabin going down => only the part
concerning the upward movement is shown.

 Only a generic cabin movement from floor j to floor j+1 is
shown. The complete upward dynamics is made of m-1 of
these diagrams cascaded together.

 The last floor (floor m) should be modified accordingly as
the cabin cannot go further up.

38

Embedded Systems Design and Modeling

Cabin Model (Continued)
 In the subdiagram representing the movement

upwards from the jth to the (j+1)th floor, h
represents any floor above (j+1)th floor

 ILBj+1 is the TPN representing the button inside
the cabin for floor j+1

 ILBh is the TPN representing the buttons inside
the cabin for floors above (j+1)th

 OLBj+1 is the TPN representing the button on
(j+1)th floor

 OLBh is the TPN representing the buttons on
floors above (j+1)th

39

Embedded Systems Design and Modeling

Cabin Petri Net

40

Embedded Systems Design and Modeling

Cabin Petri Net Description
 Place Fj represents the cabin being stopped at floor j.
 Place Fj2j+1 represents the cabin moving from floor j to floor j+1.
 Place F'j+1 represents the cabin having just arrived at floor j+1.
 The transition between F'j+1 and F''j+1 represents the cabin

remaining at the floor at least dp time units (where dp is the time
for a person to get off the cabin).

 When the cabin arrives at the floor j+1, there are two possible
options: either it stops at the floor (place Fj+1) or it keeps moving
to floor j+2 without stopping (place UpFj+1); if there are requests
pending both for floor j+1 and for floors above j+1, the choice is
entirely nondeterministic (that is, the cabin might not stop even if
a request for floor j+1 is active).

 The cabin moves upward from floor j only if there is at least one
pending request from/for a floor above j.

 ∆t is the fixed time to move from one floor to the next.
41

